PSTAT 5A: Quiz 01

Summer Session A 2023, with Ethan P. Marzban

Please Note: There were several versions of the quiz, each of them with slightly different contexts and numbers.

1. Consider the list of numbers

$$
X=\{-1,0,3,5\}
$$

(a) (3 points) Compute \bar{x}, the mean of X.

Solution:

$$
\begin{aligned}
\bar{x} & =\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
& =\frac{1}{4}(-1+0+3+5)=\frac{7}{4}=1.75
\end{aligned}
$$

(b) (5 points) Compute s_{X}, the standard deviation of X. Express your final answer as a fraction.

Solution: We first find the variance:

$$
\begin{aligned}
s_{X}^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
& =\frac{1}{4-1} \cdot\left[\left(-1-\frac{7}{4}\right)^{2}+\left(0-\frac{7}{4}\right)^{2}+\left(3-\frac{7}{4}\right)^{2}+\left(5-\frac{7}{4}\right)^{2}\right]=\frac{91}{12}
\end{aligned}
$$

Hence, we have

$$
s_{X}=\sqrt{s_{X}^{2}}=\sqrt{\frac{91}{12}}=\frac{\sqrt{273}}{6} \approx 2.754
$$

2. At Pickles and Swiss, it is found that 60% of customers order pickles on their sandwiches, 50% order Swiss Cheese on their sandwiches, and 30% order both pickles and Swiss Cheese on their sandwiches. A customer is to be selected at random.

Solution: Let A denote the event "the customer orders pickles", and let B denote the event "the customer orders Swiss Cheese." Then, from the problem statement, we have

$$
\mathbb{P}(A)=0.6 ; \quad \mathbb{P}(B)=0.5 ; \quad \mathbb{P}(A \cap B)=0.3
$$

By The Way: This is what I mean by "defining your events in words".
(a) (4 points) What is the probability that they order either pickles or Swiss Cheese (or both) on their sandwich?

Solution: We seek $\mathbb{P}(A \cup B)$, which can be computed using the Addition Rule:

$$
\begin{aligned}
\mathbb{P}(A \cup B) & =\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B) \\
& =0.6+0.5-0.3=0.8
\end{aligned}
$$

(b) (5 points) What is the probability that they order either pickles or Swiss Cheese but not both on their sandwich? You should sketch a Venn Diagram for full points.

Solution: We seek $\mathbb{P}\left[\left(A \cap B^{\complement}\right) \cup\left(A^{\complement} \cap B\right)\right]$. To find this probability, we sketch a Venn Diagram:

From this, we see that

$$
\begin{aligned}
\mathbb{P}\left[\left(A \cap B^{C}\right) \cup\left(A^{C} \cap B\right)\right] & =\mathbb{P}(A)+\mathbb{P}(B)-2 \cdot \mathbb{P}(A \cap B) \\
& =0.6+0.5-2 \cdot 0.3=0.5
\end{aligned}
$$

(c) (4 points) What is the probability that they order neither pickles nor Swiss Cheese on their sandwich?

Solution: We seek $\mathbb{P}\left(A^{\complement} \cap B^{\complement}\right)$. By DeMogran's Laws, we know that

$$
\left(A^{\mathrm{C}} \cap B^{\mathrm{C}}\right)=A \cup B
$$

As such, by the Complement Rule,

$$
\mathbb{P}\left(A^{C} \cap B^{C}\right)=1-\mathbb{P}(A \cup B)=1-(0.8)=0.2
$$

