\qquad

PSTAT 5A: Homework 02

Summer Session A 2023, with Ethan P. Marzban

As a reminder, homework is neither collected nor graded. We encourage you to stop by Office Hours to ask any questions you may have about your work, or the problems themselves!

1. A recent survey at a cinema revealed that 80% of moviegoers purchase popcorn and 60% purchase a drink. Additionally, 62.5% of those who purchase popcorn also purchase a drink.
(a) Define events, and translate the information provided in the problem. Remember: the events you define should not be conditional.

Solution: Let P denote the event "a randomly selected moviegoer purchases popcorn" and D denote "a randomly selected moviegoer purchases a drink." Then, the problem tells us that

$$
\mathbb{P}(P)=0.8 ; \quad \mathbb{P}(D)=0.6 ; \quad \mathbb{P}(D \mid P)=0.625
$$

(b) What is the probability that a randomly selected moviegoer purchases both popcorn and a drink?

Solution: We seek $\mathbb{P}(P \cap D)$, which we compute using the Multiplication Rule:

$$
\mathbb{P}(P \cap D)=\mathbb{P}(D \mid P) \cdot \mathbb{P}(P)=(0.625) \cdot(0.8)=0.5
$$

(c) What is the probability that a randomly selected moviegoer purchases neither popcorn nor a drink?

Solution: We seek $\mathbb{P}\left(P^{C} \cap D^{C}\right)$. As we have seen previously, this is computed using

$$
\begin{aligned}
\mathbb{P}\left(P^{C} \cap D^{C}\right) & =1-\mathbb{P}(P \cup D) \\
& =1-[\mathbb{P}(P)+\mathbb{P}(D)-\mathbb{P}(P \cap D)] \\
& =1-(0.8+0.6-0.5)=0.1
\end{aligned}
$$

2. Consider the experiment of selecting a number at random from the set of positive integers between 1 and 100, inclusive on both ends, and recording the number selected.
(a) Write down the outcome space Ω for this experiment.

Solution: Since the only outcomes that could result from this experiment are the positive integers between 1 and 100, inclusive, we have

$$
\Omega=\{1,2, \cdots, 100\}
$$

(b) What is the probability that the number selected is even?

Solution: Let A denote the event "the number selected was even." There are 50 even integers between 1 and 100, inclusive, meaning there are 50 elements in A and so desired probability is simply

$$
\mathbb{P}(A)=\frac{50}{100}=\frac{1}{2}=50 \%
$$

(c) What is the probability that the number selected is strictly greater than 65 ?

Solution: Let B denote the event "the number selected was strictly greater than 65 " There are 35 integers greater than 65 but less than or equal to 100 , meaning there are 35 elements in B and so desired probability is simply

$$
\mathbb{P}(B)=\frac{35}{100}=\frac{7}{20}=35 \%
$$

(d) What is the probability that the number selected is even, given that it is strictly greater than 65 ?

Solution: Let C denote the event "the number selected is even" and let B be defined as in part (c) above. We seek $\mathbb{P}(C \mid B)$, which we compute using

$$
\mathbb{P}(C \mid B)=\frac{\mathbb{P}(C \cap B)}{\mathbb{P}(B)}=\frac{\#(C \cap B)}{\#(B)}
$$

There are 18 numbers between 66 and 100, inclusive, that are even; hence \# $(C \cap B)=$ 18 and

$$
\mathbb{P}(C \mid B)=\frac{18}{35} \approx 51.43 \%
$$

(e) If the number is a multiple of three, what is the probability that it is odd?

Solution: Let D denote the event "the number selected is a multiple of three" and E denote the event "the number selected is odd". Similar to part (d) above, we have

$$
\mathbb{P}(E \mid D)=\frac{\#(E \cap D)}{\#(D)}
$$

There are 16 numbers that are odd multiples of three between 1 and 100, inclusive, meaning \# $(E \cap D)=16$; additionally, there are 33 multiples of three in Ω meaning $\#(D)=33$ and so

$$
\mathbb{P}(E \mid D)=\frac{16}{33}=48 . \overline{48} \%
$$

3. A researcher is interested in the relationship between exercise habits and mental health. To that effect, she surveyed several individuals on their exercise habits as well as their mental health; the results of her survey are displayed in the following contingency table:

	Mental_Health		
Exercise_Habits	Poor	Fair	Good
Sedentary	30	25	20
Moderately Active	40	35	30
Very Active	45	50	25

A person is selected at random. Use the Classical Approach to Probability wherever necessary.
(a) What is the probability that the selected person has a sedentary lifestyle?

Solution: Let S denote the event "the person has a sedentary lifestyle". Then, by the Classical Approach to Probability,

$$
\mathbb{P}(S)=\frac{\#(S)}{\#(\Omega)}=\frac{30+25+20}{30+25+20+40+35+30+45+50+25}=\frac{75}{300}
$$

\qquad
(b) What is the probability that the selected person has 'fair' mental health?

Solution: Let F denote "the person has 'fair' mental health"; then

$$
\mathbb{P}(F)=\frac{\#(F)}{\#(\Omega)}=\frac{25+35+50}{30+25+20+40+35+30+45+50+25}=\frac{110}{300}
$$

(c) What is the probability that the selected person has both a 'moderately active' lifestyle and ‘good' mental health?

Solution: Let M denote "the person has a moderately active lifestyle" and G denote "the person has ‘good' mental health". Then

$$
\mathbb{P}(M \cap G)=\frac{30}{30+25+20+40+35+30+45+50+25}=\frac{30}{300}
$$

(d) Given that the person has 'good' mental health, what is the probability that they have a 'very active' lifestyle?

Solution: Let G be defined as above, and let V denote "the selected person has a very active lifestyle." Then

$$
\mathbb{P}(V \mid G)=\frac{\#(V \cap G)}{\#(G)}=\frac{25}{20+30+25}=\frac{25}{75}
$$

(e) If the person has a 'moderately active' lifestyle, what is the probability that they have 'fair' mental health?

Solution: Let M and F be defined as above. Then

$$
\mathbb{P}(F \mid M)=\frac{\#(F \cap M)}{\#(M)}=\frac{35}{40+35+30}=\frac{35}{105}
$$

4. Consider events E and F with $\mathbb{P}(E)=0.5, \mathbb{P}(F)=0.7$, and $\mathbb{P}(E \cap F)=0.35$.
(a) What is $\mathbb{P}(E \cup F)$?

Solution: By the Addition Rule,

$$
\mathbb{P}(E \cup F)=\mathbb{P}(E)+\mathbb{P}(F)-\mathbb{P}(E \cap F)=0.5+0.7-0.35=0.85
$$

(b) What is $\mathbb{P}(E \mid F)$?

Solution: By the definition of conditional probability,

$$
\mathbb{P}(E \mid F)=\frac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)}=\frac{0.35}{0.70}=\frac{1}{2}
$$

(c) What is $\mathbb{P}(F \mid E)$?

Solution: By the definition of conditional probability,

$$
\mathbb{P}(F \mid E)=\frac{\mathbb{P}(E \cap F)}{\mathbb{P}(E)}=\frac{0.35}{0.50}=\frac{7}{10}
$$

(d) Are E and F mutually exclusive? Why or why not?

Solution: Definitionally, events E and F are mutually exclusive if $E \cap F=\varnothing$ which means $\mathbb{P}(E \cap F)=0$. Here, however, $\mathbb{P}(E \cap F)=0.35 \neq 0$ meaning the two events are not mutually exclusive.
(e) Are E and F independent? Why or why not?

Solution: We could use any of the three conditions for independence to note that E and F are indeed independent; for example, we could note that

$$
\mathbb{P}(E \cap F)=0.35=(0.5) \cdot(0.7)=\mathbb{P}(E) \cdot \mathbb{P}(F)
$$

The other conditions also hold.

