\qquad UCSB NetID:
First, then Last
NOT your Perm Number!

Circle Your Section: Olivier 12:30-1:20pm Mengrui 2-2:50pm Mengrui 3-3:50pm

FREE RESPONSE QUESTIONS

Instructions:

- You will have 75 minutes to complete the entire exam
- Do not begin working on the exam until instructed to do so.
- During the final 10 minutes of the exam, we will ask everyone to remain seated until the exam concludes.
- This exam comes in TWO PARTS: this is the FREE RESPONSE part of the exam.
- There is a separate booklet containing Multiple Choice questions that should have been distributed to you at the same time as this booklet.
- Write your answers directly in the space provided on this exam booklet.
- You do not need to write anything on your scantron for this part of the exam.
- Be sure to show all of your work; correct answers with no supporting work will not receive full credit.
- The use of calculators is permitted; the use of any other aids (including notes, laptops, phones, etc.) is strictly prohibited. A list of formulae, as well as a collection of tables, is included with this exam.
- PLEASE DO NOT DETACH ANY PAGES FROM THIS EXAM.
- Good Luck!!!

Honor Code: In signing my name below, I certify that all work appearing on this exam is entirely my own and not copied from any external source. I further certify that I have not received any unauthorized aid while taking this exam.

Free Response Questions

Problem 1. According to the World Bank, only 54.2% of households in Ethiopia live with access to electricity. To test these claims, a sociologist takes a representative sample of 130 Ethiopian households, and observes that 67 of these households live with access to electricity. Suppose that the sociologist wants to test the World Bank's claims against a two-sided alternative, at a 5% level of significance.
(a) Define the parameter of interest, and call it p.
(b) Define the random variable of interest, and call it \widehat{P}.
(c) State the null and alternative hypotheses in terms of p.
(d) Compute the observed value of the test statistic.
(e) Compute the critical value of the test. Be sure to check any/all relevant conditions first!
(f) Now, perform the test and interpret your conclusions in the context of the problem.

Problem 2. The length of a GauchoSteel-brand rod is meant to be 11 feet; due to imperfections in the manufacturing process, however, the length of a randomlyselected GauchoSteel-brand rod is actually a random variable X that has the following density curve:

(a) What is the probability that a randomly-selected GauchoSteel-brand rod is exactly 11 meters in length?
(b) What is the probability that a randomly-selected GauchoSteel-brand rod is longer than 11.5 meters?
(c) A sample of 10 GauchoSteel-brand rods is taken with replacement, and the number of rods longer than 11.5 meters is recorded. What is the probability that this sample contains exactly 4 rods that are longer than 11.5 meters? Be sure to define any new random variables clearly and explicitly, and make sure to check any/all relevant conditions! You do not need to report your final answer as a decimal.

Problem 3. Alayah is interested in performing inference on the true average monthly rent (in thousands of dollars) of a 1-bedroom apartment in Santa Barbara. To that effect, she takes a representative sample of 100 1-bedroom apartments in Santa Barbara, and finds that these 100 apartments have a combined average monthly rent of 2.2 thousand dollars per month. From prior studies, she knows that the standard deviation of all monthly rents of 1-bedroom apartments in Santa Barbara is 0.75 thousand dollars.
(a) Define the parameter of interest.
(c) What distribution should Alayah use when making inferences about the true average monthly rent of a 1-bedroom apartment in Santa Barbara? Be sure to check any/all relevant conditions.
(d) Construct a 97% confidence interval for the true average monthly rent of a
ouct 1-bedroom apartment in Santa Barbara. Be sure to interpret your interval in the context of the problem!
(e) Would a 95% confidence interval for the true average monthly rent of a 1-bedroom apartment in Santa Barbara be wider or narrower than the interval you constructed in part (d) above? Explain briefly; you do not need to construct the interval.

Problem 4. In the field of Psychology, a Reaction Time Test is used to measure the time it takes a given person to respond to a specific stimulus; for example, how long it takes a person to press a button once the button has lit up. Suppose that for a particular stimulus, response times of randomly-selected individuals follow a normal distribution centered at 3 seconds with a standard deviation of 0.5 seconds. A person is selected at random, administered the stimulus, and their reaction time is recorded.
(a) Define the random variable of interest, and call it X.
(b) What is the probability that a randomly-selected person has a reaction time between 2.5 seconds and 3.7 seconds?
(c) Can you foresee any potential difficulties in modeling response times using a normal distribution? Specifically, think in terms of state spaces.
(d) What sort of plot would be best-suited for assessing whether or not a set of reaction times could plausibly have been drawn from a normal distribution?

